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Description and classification of folds in single surfaces 
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Abstract--I propose a new three-parameter description of fold style in folded surfaces based on the ratio of the 
amplitude to the half-wavelength (the aspect ratio P), the maximum angle of relative rotation of opposite limbs 
of the fold (the folding angle ~0), and a measure of the relative curvature at the fold closure (the bluntness b). For 
symmetric folds, the first two parameters define a trapezoid that circumscribes the fold and provides the primary 
criterion for the classification of fold style. Within a given trapezoid, fold style variations are defined by the 
bluntness. Perfect folds in profile are defined to have a single hinge with perfectly straight limbs tangent to hinge 
zones that are perfect circular arcs. An analytic description of the variation in perfect fold geometry defines the 
limits for all natural single-hinged folds. 

The proposed system includes folds with folding angles both less than and greater than isoclinal folds, it applies 
to both single-hinged and multiple-hinged folds, and it also can be extended to apply to asymmetric folds. 
Previously proposed two-parameter classification systems can only describe folds that are restricted to a specific 
surface through the three-parameter fold style space proposed here. 

INTRODUCTION 

A FOLD style is the combination of the geometric and 
morphologic characteristics that distinguish one type of 
fold from all others. An element of fold style is a 
quantitative measure or a qualitative description of such 
a distinctive characteristic, and a set of fold style ele- 
ments serves objectively to characterize the unique 
qualities of the many different types of folds that are 
observed in deformed rocks. The elements of fold style 
can be separated into those that describe folds in a single 
surface, in a single layer, and in a multilayer. 

Ultimately we would like to correlate the style of 
folding with the mechanism of formation and the strain 
distribution, although the correspondence need not be 
one-to-one. To that end, it is necessary to have a system 
of description and classification of folds that is practical 
and that highlights the significant differences among fold 
styles. Numerous authors have proposed such systems, 
among which are classifications for multilayer folds 
(Turner & Weiss 1963, Hansen 1971), for single layer 
folds (Ramsay 1967) and for folds in single surfaces 
(Fleuty 1964, Ramsay 1967, Stabler 1968, Hudleston 
1973). Hudleston (1973) presents a brief overview of a 
variety of classification schemes with extensive refer- 
ences to work in the field. 

In this paper I propose a new three-parameter classifi- 
cation of folds in single surfaces that permits a more 
precise description of fold geometry and encompasses a 
broader range of geometries than the two-parameter 
classifications proposed by Ramsay (1967), Stabler 
(1968) and Hudleston (1973). The scheme also lends 
itself to a relatively simple 'visual' classification of folds. 

In the following discussion, I use the term hinge in its 
usual definition as the point or points of maximum 
curvature between two adjacent inflection points on the 
profile of a folded surface. I use the term closure to refer 

both to the point of maximum curvature of single-hinged 
folds (Fig. la),  and to the point of minimum curvature 
between hinges of double-hinged folds (Fig. lb). For 
hinge zones and closure zones characterized by circular 
arcs, the hinge and closure points are defined to be at the 
midpoint of the arc. 

I define perfect folds to be single-hinged folds which in 
profile have limbs that are perfectly straight and hinge 
zones that are perfect circular arcs (Fig. 2). The limbs 
join the hinge zone at the point where the straight limbs 
are tangent to the circular hinge zone (Fig. 2a). Perfect 
folds may vary in geometry between the two extremes of 
(i) perfect chevron folds, for which the two limbs are 
straight and there is no hinge zone (Fig. 2b), and (ii) 
perfect circular folds, for which the hinge zone is a single 
arc of a circle and there are, strictly speaking, no limbs 
(Fig. 2c). All other folds, which includes essentially all 
natural folds, are referred to as imperfect folds. The 
geometry of perfect folds is a convenient reference 
against which to compare imperfect fold geometries. 

FOLD HINGE -- FOLD CLOSURE 
X 

FOLD CLOSURE 

Fig. 1. The closure of a fold in profile. (a) On a single-hinged fold, the 
closure and the hinge are identical and mark the point of maximum 
curvature, or the midpoint on the arc of maximum curvature. (b) On a 
double-hinged fold, the closure is the point of minimum curvature, or 
the midpoint on the arc of minimum curvature, between the hinges of 

the fold. 
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Fig. 2. The geometry of perfect folds. (a) A perfect fold has a single 
hinge and in profile has perfectly straight limbs which are tangent to 
hinge zones that are perfectly circular arcs. (b) A perfect chevron fold 

has no hinge zone. (c) A perfect circular fold has no limbs. 

ELEMENTS OF FOLD STYLE FOR SYMMETRIC 
FOLDS 

Symmetric folds are characterized in profile by a 
mirror plane of symmetry that passes through the closure 
and is normal to, and bisects, the median line segment M 
between adjacent inflection points il and i 2 (Ramsay 
1967, pp. 351 and 357). The geometry of any such fold 
may be described with reference to a circumscribed 
trapezoid (Fig. 3) whose base is the median line segment 
M, whose sides are tangent to the fold limbs at the 
inflection points and whose top is parallel to the base and 
tangent to the fold at the closure. The three elements of 
fold style that characterize the geometry of a half- 
wavelength fold in a single surface are related to this 
trapezoid and include the aspect ratio P, the folding 
angle 4~, and the bluntness b. I discuss these in order 
below. 

Aspect ratio P 

Most authors recognize the amplitude A and the 
wavelength 2 as significant characteristics in describing a 
fold. Both quantities, however, describe an aspect of the 
scale of the fold as well as of the geometry. Similarities 
in the geometry of different folds, independent of scale, 
are revealed by the ratio of the amplitude to the half 
wavelength (cf. Hansen 1971), which I refer to as the 
aspect ratio P. 

In terms of the circumscribed trapezoid, the amplitude 
A is the perpendicular distance from the base to the top 
of the trapezoid, and the half wavelength 2/2 is the length 
M of the trapezoid base, which is the distance between 
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Fig. 3. The circumscribed trapezoid defines the aspect ratio P = A/M, 
the folding angle q and interlimb angle ¢ of symmetric  folds. The 
bluntness b distinguishes folds of different style within a given trape- 
zoid. r~ labels the radii of  closure curvature;  r0 is the radius of  curvature 
for the reference circle. (a) Foran  acute fold, the half-folding angle q/2 
is an acute angle. For the circumscribing trapezoid shown here. 
P = I).67, q~ = 130 °. For the three folds shown within the one trape- 
zoid, b = 0.54, 0.18 and 11. The first fold is a perfect fold• (b) For an 
obtuse f01d, the half-folding angle q/2 is an obtuse angle. For this 
circumscribing trapezoid, P = 1.8, q = 230 °. For the four folds shown 
within the trapezoid, b = 1,79, 1•35, 0.69 and 0. The value of 1•35 is 

for the perfect fold. 

adjacent inflection points of the fold (Fig. 3). Thus 

A 
t '  = - - -  ( l)  

M 

The aspect ratio for most folds falls within the range 
0.1 -< P -< 10. The change in geometry between 0.1 and 
1, however, is comparable to the change between 1 and 
10. Thus I use a logarithmic scale for plotting the aspect 
ratio and for defining the five categories of wide, broad, 
equant, short and tall folds (Table 1). 
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Table 1. Aspect  ratio 

Descriptive Aspect  ratio (P) 
term P = A/M Log (P) 

Wide 0.1 -< P <  0.25 - 1  -< log P <  - 0 . 6  
Broad 0.25 -< P < 0.63 - 0 . 6  -< log P < - 0 . 2  
Equant  0.63 -< P < 1.58 - 0 . 2  -< log P < 0.2 
Short 1.58 -< P <  4 0.2 - log P <  0.6 
Tall 4 -< P < 10 0.6 -< log P < 1 

Table 2. Tightness of folds 

Descriptive terms Folding angle Inter l imb angle 

Acute Gentle  0 < ~ < 60 180 > t > 120 
Open 60 -< ~ < 110 120 >- l > 70 
Close 110 -< ~ < 150 70 -> L > 30 
Tight 150 -< ~ < 180 30 -> t > 0 

Isoclinal ~ = 180 t = 0 

Obtuse Fan 180 < q~ < 250 0 > t > - 7 0  
Involute 250 -< ~b -< 360 - 7 0  -> t -> - 1 8 0  

Folding angle + 

The folding angle ~ is the sum of the two internal base 
angles of the circumscribed trapezoid (Fig. 3a & b). It is 
a measure of the maximum amount of rotation that one 
limb has experienced relative to the other during the 
folding. ~ is also the angle between the two normals to 
the fold limbs contructed at the inflection points (Fig. 3a 
&b) .  

I refer to folds having acute base angles (q~/2 < 90 °) as 
acute folds and those with obtuse base angles (q~/2 > 90 °) 
as obtuse folds. These types are separated by isoclinal 
folds, for which q~/2 = 90 ° or q~ = 180 °. Acute folds can 
be divided into the standard categories for the tightness 
of folding proposed by Fleuty (1964) of gentle, open, 
close and tight (Table 2). I divide obtuse folds into fan 
folds and involute folds (Table 2). 

The interlimb angle t (Ramsay 1967) is the supplement 
of the folding angle (t = 180 ° - q~). Thus the folding 
angle increases as the amount of folding increases, 
whereas the interlimb angle decreases, and the folding 
angle increases naturally above 180 ° to include obtuse 
folds (Fig. 3b), whereas to describe these folds with the 
interlimb angle, a specific definition of negative inter- 
limb angles must be made (see Table 2). 

The bluntness ratio B and the bluntness b 

The bluntness of a fold is a measure of how rounded or 
angular the closure is. The bluntness ratio B is defined as 
the ratio of the radius of curvature at the fold closure re 
to the radius of curvature of the reference circle r0, which 
is taken as the circle tangent to both fold limbs at the 
inflection points (Fig. 3) 

B = r--zc • (2) 
r0 

The bluntness b is defined in terms of the bluntness ratio 
and the radii of curvature of the closure and the refer- 
ence circles by 

{ B =rc/r° f°r  rc-< r° (3) 
b = - 1/B 2 - ro/r¢ for r c -> r0" 

This definition of the bluntness b eliminates the prob- 
lem that the bluntness ratio B blows up to infinity for 
double-hinged folds with very large closure radii. In this 
extreme of the range, very minor changes in geometry 
lead to major changes in B, making it of limited useful- 
ness in the practical classification of folds. The bluntness 
b, however, varies continuously and smoothly from 0 to 

2 as the closure radius of curvature increases from 0 to 0o. 
Thus for very flat closures, only minor changes in fold 
geometry produce very large changes in B, but only 
minor changes in b. Although the geometrical analysis 
must be done using the bluntness ratio B, the results are 
converted to the bluntness b for all plotting and classifi- 
cation. 

As I will show in the following discussion, the value of 
b = 1 is a geometrically critical value, separating acute 
perfect folds from obtuse perfect folds, and single- 
hinged from double-hinged folds. The symmetry of b 
about the value b = 1 is therefore a convenient feature 
for classification. Regardless of folding angle or aspect 
ratio, all perfect chevron folds are characterized by 
b = 0 (Fig. 2b), all perfect circular folds are charac- 
terized by b = 1 (Fig. 2c), and all folds with perfectly fiat 
closures are characterized by b = 2. 

The bluntness ratio B is comparable to the inverse of 
the sharpness defined for single-hinged folds by Ramsay 
(1967), except that the definition of the reference circle 
is different. In Ramsay's definition, the radius of the 
reference circle is M/2, whereas here it is 

M (4) r0 - 2 sin ~b/2 

The sharpness blows up to infinity for chevron folds, 
with the result that very minor changes in the geometry 
of folds with sharp hinges produce extremely large 
changes in the sharpness, limiting the usefulness of this 
measure for classifying folds. Moreover, the sharpness 
does not always give a consistent measure of fold 
geometry. For example, for a series of perfect circular 
folds having the same constant curvature but varying 
folding angle or aspect ratio, the sharpness varies 
whereas the bluntness is constant. This difference results 
from the different definition of the reference radius r0. 

Folds are conveniently subdivided according to their 
bluntness into sharp, angular, subangular, subrounded, 
rounded and blunt folds, as defined in Table 3 (see 
Fig. 9). 

Table 3. Bluntness of folds 

Descriptive term Bluntness (b) Bluntness ratio (B) 

Sharp 0 . 0 - < b < 0 . 1  0 . 0 - < B < 0 . 1  
Angular  0.1 ~ b < 0.2 0.1 -< B < 0.2 
Subangular  0.2 ~ b < 0.4 0.2 -< B < 0.4 
Subrounded 0.4 -< b < 0.8 0.4 -< B < 0.8 
Rounded 0.8 -< b -< 1 0.8 -< B -< 1 
Blunt l < b - < 2  I < B - < ~  
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T H E  G E O M E T R Y  O F  S Y M M E T R I C  
P E R F E C T  F O L D S  

For a particular trapezoid, there is only one possible 
form of perfect fold that can be inscribed, and therefore 
the three elements of fold style P, ~ and b are not 
independent. I derive this dependence below and use 
the relationships to show that perfect single-hinged folds 
are a limiting case for the geometry of possible fold 
styles. 

The relationship among the style elements of perfect 
folds is derived from the diagrams in Fig. 4. For acute 
folds, the relations in Fig. 4(a) show that the aspect ratio 
P is related to the radius of closure curvature r~ and the 
radius of the reference circle r0 by: 

A _ r~ - r~ cos ~p/2 + (r0 - r~) sin q~/2 tan q~/2 p -  
M 2r0 sin q~/2 

(5) 
b 
i 
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Fig. 4. Geomet r i ca l  re la t ions  f rom which the d e p e n d e n c e  of P on B 
and  ~p for perfect  folds is der ived.  (a) A cu t e  perfect  folds. (b) O b t u s e  

perfect  folds. 

Using equation (,2) and standard trigonometric iden- 
tities, equation (5) can be put in the form 

P =  B c o s c p / 2 -  1 + 0.5 tan q~/2. (6) 
sin q~ 

For obtuse folds, the relationship derived from Fig. 
4(b) is similar to equation (5) with the angle q~/2 replaced 
by ( J  - q~/2) and the signs of the second and third terms 
in the numerator reversed. This relationship also 
reduces to equation (6). Thus for both acute and obtuse 
perfect folds, equation (6) shows that for a constant 
value of the folding angle q~ there is a linear relationship 
between the aspect ratio P and the bluntness ratio B: 

The relationship of equation (6) is plotted in the 
three-dimensional space of log P, ~b and b in Figl 5. The 
form lines depicting the surface are lines of constant q~ 
and lines of constant bl The straight lines of constant 
in equation (6) become Curved with the use of the 
logarithmic P axis and b instead of B. The contours are 
drawn only on that part of the surface occupied by 
perfect folds. Formal extension of the surface beyond 
these limits is meaningless. The contour for b = 1 is a 
critical boundary for the geometry of perfect folds, and 
it forms a y-shaped curve that consists of two branches 
(Fig. 5; see also Fig. 11). One branch is the vertical line 
at q~ = 180 °. The other has a low slope for ~ -< 180 ° and 
goes through the point (P, ~p)= (0.5, 180°); as ~0 
approaches 360 ° , the slope tends toward vertical. 

The vertical branch of the b = 1 contour at q$ = 180 ° 
is the plot of all perfect isoclinat folds, and it separates 
acute from obtuse perfect folds. Because the limbs are 
parallel, the curvature of the hinge zone is invariant and 
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Fig. 5 The  th ree -d imens iona l  sur tacc  m fold style space  (log P 
qJ - b) tha t  def ines  the possible  g e o m e t r y  of perfec t  folds. T h e  two sets  
of  c o n t o u r s o n  the surface  are lines of  cons tan t  b and  of cons tan t  o .  T h e  
b c o n t o u r s  are at 0 . 0 . 2 . 0 . 4 . 0 . 6 . 0 . 8 . 0 . 9 . 1 . 0 . 1 . 1 .  1 .2 .1 .3 .1 .4 .  I .Yand  
1.7 (cf. Fig. I l l .  The  q> con tou r s  start  at 30 ¢ and  increase  at 15 ° 
intervals  with the addi t ion of the  110 ° con tour ,  and the  subs t i tu t ion  of 
the 250 ° for the 255 ° con tour .  H e a v y  ~p con tou r s  are the bounda r i e s  of  

fold t igh tness  c a t e g o r i e s / T a b l e  2; Figs. 8a and  I 1 ). 
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Fig. 6. Perfect circular folds, for which the bluntness b = 1, represent a limiting geometry for all perfect folds. (a) For all 
isoclinal perfect folds, the bluntness must be 1 for all possible aspect ratios. (b) Perfect acute folds at constant q~ range in 
bluntness from a minimum of b = 0 to a maximum of b = 1. (c) Obtuse perfect folds at constant ~ range in bluntness from 

a minimum orb = 1 for perfect circular folds to a theoretical maximum for individual folds ofb = 2 at infinite aspect ratio. 

thus these folds must  always have a bluntness of  I for  all 
aspect ratios P -> 0.5 (log P -> - 0 . 3 0 1 )  (Fig. 6a). 

The  o ther  branch of  the b = 1 con tour  is the line of  all 
perfect  circular folds, and it represents  a max imum 
possible bluntness for acute perfect  folds (q~/2 < 90 °) 
(Fig. 6b) and a min imum possible bluntness for  obtuse  
perfect  folds (~/2 > 90 °) (Fig. 6c). This relat ionship 
results in the negative slope of  lines of  constant  ~ for 
< 180 °, and the positive slope of  these lines for  ~ > 180 ° 
(Fig. 5). The  point  where  the two branches  of  the b = 1 
con tour  join, i.e. (P, ~ ,  b) = (0.5, 180 °, 1), represents  
an isoclinal perfect  circular fold (Fig. 6a). 

Obtuse  perfect  folds are limited by ano ther  geometr i -  
cal constra int  if the folds occur  as par t  of  a periodic train 
of  identical folds (Fig. 7). F r o m  the relat ions shown at 
the top  of  Fig. 7(a),  it is clear that  

re = M (7) 

and f rom the relat ions shown along the median  line, we 
see that  equa t ion  (4) holds for  r0. Substituting equat ions  
(4) and (7) into (2) shows that  the bluntness ratio is 
independen t  of  the aspect ratio 

B = 2 sin ~/2. (8) 

Thus  f rom equat ions  (8) and (6), the limiting geome t ry  
of  such folds is comple te ly  de te rmined  by only a single 
pa ramete r ,  which for  these equat ions  we can choose  to 
be the folding angle ~. The  geomet ry  in Fig. 7(b) shows 

Fig. 7. The limit for the geometry of periodic obtuse perfect folds. 
(a) Geometrical relations demonstrating that such folds are deter- 
mined by a single independent  parameter.  The maximum limit for the 
bluntness b = 1.5 is approached as ~/2 approaches 90 °. (b) Geometri-  
cal relations showing that the maximum possible folding angle for such 
folds is ~ = 300 ° which is for perfect circular periodic folds whose 

bluntness, b = 1, is the minimum possible value for perfect folds. 
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that for periodic, obtuse, perfect circular folds, the 
folding angle cannot exceed ~p = 300 °. Thus in Fig. 5, 
the line bounding the area of the perfect fold surface on 
which periodic obtuse folds can plot extends from 
~p = 300 ° at the b = 1 line to approach asymptotically 
the contour for b = 1.5 as q~ decreases towards 180 ° (cf. 
equation 8). 

10 
8 
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5 

4 

3 

THE DESCRIPTION AND CLASSIFICATION OF 
SYMMETRIC FOLDS 

Folds found in nature can hardly be expected to be 
perfect folds. The values of their style elements, there- 
fore, do not in general plot on the perfect fold surface 
shown in Fig. 5. That surface, however, represents a 
boundary between single-hinged and doubled-hinged 
imperfect folds, as is demonstrated below. 

A useful constraint on the possible geometric vari- 
ation of imperfect symmetric folds of constant folding 
angle comes from the fact that the integral of the curva- 
ture (dq~/ds) along the arc length s of the fold from the 
inflection point (i) to the closure point (c) must always 
be half the folding angle 

I7 ds = ~p/2. (9) 

Thus any alteration in geometry that changes the portion 
of the folding angle subtended by one part of the fold 
must be associated with a compensating change in the 
portion of the folding angle subtended by other parts of 
the fold. 

As a means of investigating the geometry and classifi- 
cation of natural folds, it is convenient to examine 
two-dimensional projections of, and sections through, 
the three-dimensional space of fold style elements 
(Fig. 5). The (log P, b) plane and the (log P, q~) plane are 
particularly useful. 

Figure 8 shows the (log P, b) plane onto which are 
projected lines of constant ~0 for different values of q~. 
Figure 8(a) is a projection of all the lines of constant q~ 
that mark the boundaries between the various categories 
of tightness (Table 2). The bluntness of b = 1 marks the 
upper boundary for acute single-hinged folds. The 
maximum value of b for periodic obtuse perfect folds is 
always b -< 1.5 (Fig. 7; equations 8 and 3). Figure 8(b) is 
a section at q~ = 130°; Fig. 8(c) is a section at q~ = 230 °. 
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Fig. 8. Projections and sections of the perfect fold surface on the 
log P - b plane. (a) Projection of the contours of constant ~ that 
separate the various categories of fold tightness (Table 2; cf. Fig. 5). 
Involute folds plot in the same field as some fan folds because along this 
line of projection the surface defining perfect fold geometry is doubled 
over (Fig. 5). (b) Section through the perfect fold surface at ~b = 130 ° 
illustrating typical relationships for acute folds. Shading shows area in 
which all  acute single-hinged folds must plot. Horizontal solid line 
indicates the upper boundary for possible acute fold geometry. Fold 
geometry along the dotted lines is shown in Fig. 9. (c) Section through 
the perfect fold surface at ~ = 230 ° illustrating typical relationships for 
obtuse folds. Shading shows area containing all single-hinged folds. 
The vertical dashed line is the limit for any periodic single-hinged fold. 

Fold geometry along the dotted lines is shown in Fig. 10. 

1.0 

0.8 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

TIGHT 

150 ° --.>. 

 ,,oo \ 

~ 6 0  o 
GENTLE 

ISOCLINAL 

I 
1 8 0  ° 

F A N  

d 
INVOLUTE 

• I I I I t I ~ p 
1.0 1,5 

LIMIT FOR 
PERIODIC 

OBTUSE FOLDS 

I 250 ° 

i 
2.0 

(a) 

i : : ! ~ :  " " 1:o . . . .  1'.5 ' ' " 2 : 0  

................ D-130 

i i) i ii15 !i 17'  
i:: : i i i i i i i l  : . . . .  : .  

(b) 

I LIMITF& / 
• :[ :::PERIODIC / 

• ', 0=230 ° 

+ o. 

10 ¢v 115 
b 

2.0 

(c) 



Classification of folds in single surfaces 613 

These last two sections are representative of the geo- 
metric variation possible for acute and obtuse folds, 
respectively. The shaded areas define the possible range 
of geometries for single-hinged folds. The possible styles 
of perfect and imperfect folds that plot on these sections 
are illustrated in Figs. 9 and 10, respectively, and are 
described in detail below. 

Perfect fold styles at constant + 

The sections through fold style space at planes of 
constant ~ are particularly useful for understanding the 
relationship between the styles of perfect folds and 
associated imperfect folds. Figures 9(a) and 10(a) illus- 
trate how, for a constant folding angle, the aspect ratio 
and the bluntness are related for perfect fold geometries. 
For acute perfect folds (Fig. 9a), b = 1 represents the 
maximum possible bluntness, whereas for obtuse perfect 
folds (Fig. 10a), b = 1 represents the minimum possible 
bluntness. In both cases, the limiting folds are perfect 
circular folds. The bluntness for acute perfect folds can 
decrease to b = 0, which represents a perfect chevron 
fold. For obtuse perfect folds, the maximum value of the 

bluntness is b < 1.5 if the folds are part of a periodic fold 
train (Fig. 7; equation 8). This limit is not absolute, 
however,  as isolated folds can exceed this value (Fig. 
10a). 

Acute perfect folds are subdivided into categories of 
bluntness (Table 3), and the fold geometries associated 
with the category boundaries are shown for perfect folds 
in Fig 9(a). Obtuse perfect folds have not been formally 
subdivided and are simply described as blunt folds. They 
can be distinguished by referring to the particular value 
of the bluntness (Fig. 10a). 

Fold styles at constant ~b and P 

Constant values of @ and P define a specific shape of 
circumscribing trapezoid, and the perfect fold associated 
with that trapezoid defines a maximum possible blunt- 
ness for imperfect single-hinged fold styles of both acute 
and obtuse geometry.  Possible style variations are illus- 
trated for acute folds in Fig. 9(b) for (P, q~) = (0.6,130°), 
and for obtuse folds in Fig. 10(b) for (P, q~)= 
(1.7,230°). 

Consider the effect of varying b along a line of constant 

lC 

b=0 0.1 0.2 0.4 0.8 1.0 

I SHARP I ANGULAR SUBANGULAR SUBROUNDED ROUNDED BLUNT 

b 

'~ CIRCULAR : 

x / 

Fig. 9. Fold style variation of acute folds at constant folding angle ~ = 130 ° showing the bounding geometries for the 
different classes of bluntness (cf. Fig. 8b). The scales on the log P and b axes are schematic. (a) A series of perfect acute 
folds of varying bluntness illustrating the dependence of the aspect ratio on the bluntness. (b) A series of acute folds of 
varying bluntness having a constant aspect ratio and folding angle (P, ~) = (0.6, 130°). The circumscribing trapezoid is 
identical for each fold. (c) A series of acute folds of varying aspect ratio having a constant folding angle and bluntness 

(~, b) = (130 °, 0.4). 
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Fig. 10. Fold style variation for obtuse folds at constant folding angle q~ = 230 ° (cf. Fig~ 8c). (a) A series of perfect obtuse 
folds illustrating the dependence of the aspect ratio on the bluntness at constant ~p. (b) A series of obtuse folds of varying 
bluntness having constant aspect ratio and folding angle (P, (p) = (1.7,230°). The circumscribing trapezoid is identical for 
each fold. (c) A series of obtuse folds of varying aspect ratio having constant folding angle and bluntness (~, b) --- (230 °. 0.4). 

(d) A series of obtuse folds of varying aspect ratio having constant folding angle and bluntness (~b, b) = (230 °, 1.2). 

P in a constant q~ plane, for both acute folds (Figs. 8b and 
9b) and obtuse folds (Figs. 8c and 10b). As b increases 
beyond the value for the associated perfect fold, the 
angle subtended by the closure zone decreases, and the 
only way a continuous fold of contant folding angle can 
be maintained is if a zone of higher curvature, i.e. a 
hinge zone, is introduced between the inflection point 
and the closure (equation 9). By symmetry, the resulting 
fold must be a double-hinged fold. Thus the perfect fold 
line must be the boundary between single-hinged and 
double-hinged folds. 

Along the same line, as b decreases below the value 
for the perfect fold, the radius of curvature of the hinge 
zone decreases (Figs. 9b and 10b). The limbs can remain 
tangent to the hinge zone only if the limbs become more 
curved, and the constancy of the folding angle (equation 
9) is maintained by decreasing the portion of the folding 
angle subtended by the hinge zone. For both acute (Fig. 
9b) and obtuse (Fig. 10b) folds, the result is a single- 
hinged imperfect fold geometry.  The radius of curvature 
of the hinge zone can decrease to zero giving b = 0. 

Fold styles at constant ~b and b 

In a plane of constant q~, it is impossible to increase the 
aspect ratio of acute single-hinged folds along a line of 
constant b beyond the perfect fold geometry. Higher 
aspect ratios can only be accommodated by double- 
hinged folds (Fig. 9c. fold geometries for b = 0.4). 
Moreover.  the aspect ratio of the perfect chevron fold 
(b - 0) represents an upper bound of P for all possible 
acute folds of a given folding angle (Figs. 8b and 9c). The 
aspect ratio can be decreased along a line of constant b if 
the curvature of the limbs increases and the angle sub- 
tended by the hinge zone decreases to satisfy equation 
(9) (Fig. 9c). This progression can continue until the 
angle subtended by the hinge zone is zero. at which poinl 
the two limbs are tangent at the same point and the fold 
geometry reverts discontinuously to that of a perfect 
circular fold. or else a triple-hinged fold must form (Fig. 
9c). Thus the aspect ratio of the perfect circular fold is a 
lower bound of P for all acute imperfect single-hinged 
folds having the same folding angle. 
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Fig. 11. The trapezoidal system of fold classification is based on a projection of the perfect fold surface in fold style space 
onto the (log P, q)) plane. Contours of constant bluntness b for perfect folds are projected onto the diagram, and these 
contours represent the maximum possible bluntness for single-hinged imperfect folds. The limit for obtuse periodic perfect 
folds projects into the upper right quadrant. Classes of tightness are indicated along the top edge, and classes of aspect ratio 

are indicated along the left side. 

For obtuse single-hinged folds in a plane of constant 
¢, there is in principle no upper limit to the aspect ratio 
along a line of constant b (Fig. 10c & d). As with acute 
folds, however, the aspect ratio can decrease at constant 
b - 1 only to the point that the curvature of the limbs 
becomes equal to that of the perfect circular fold, at 
which point either the geometry changes discontinuously 
to that of the perfect circular fold, or else a triple-hinged 
fold must form (Fig. 10c, fold geometries along b - 0.4). 
At constant b -> 1, the aspect ratio of obtuse imperfect 
single-hinged folds can decrease to the value of the 
associated perfect fold, at which point the fold must 
become double-hinged (Fig. 10d, fold geometries along 
b = 1.2). Thus the obtuse perfect fold geometry defines 
a lower limit to the aspect ratio for all obtuse imperfect 
single-hinged folds. 

SG lO/6 -g  

The maximum value of b for periodic obtuse perfect 
folds of a given folding angle is also a limit for imperfect 
folds. Although periodic imperfect folds can have a 
higher aspect ratio at the same value of b than the 
associated perfect folds, the bluntness cannot increase 
beyond the periodic limit without introducing a double- 
hinged geometry. 

Thus, summarizing the relations for acute imperfect 
single-hinged folds of a given folding angle, we conclude: 
(1) perfect folds provide an upper limit for values of both 
aspect ratio P and bluntness b; (2) perfect circular folds 
define the lower limit of aspect ratio P for all values of 
bluntness b -< 1; and (3) perfect chevron folds define the 
upper limit of aspect ratio P for any possible acute fold. 
Thus acute imperfect single-hinged folds can only plot in 
a restricted area represented for ~ = 130 ° by the shaded 
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Fig. 12. The trapezoidal system of fold classification, from Fig. 11, showing a sampling of the fold style trapezoids. Perfect 
folds plot only in the area contoured in Fig. 11 and are shown inscribed in the trapezoids: Outside the area of perfect folds, 
two possible styles of double-hinged folds are inscribed in each trapezoid. For a given trapezoid, differences in fold style arc 

defined by the bluntness. 

area of Fig. 8(b). By extension into the ~p dimension, 
such folds are restricted to a volume bounded by the 
perfect fold surface and by a set of lines extending from 
the b = 1 boundary of that surface parallel to the b axis. 

Summarizing the relations for obtuse imperfect single- 
hinged folds of a given folding angle, we conclude: 
(1) perfect folds provide a lower limit for values of 
aspect ratio P for b >- 1 and an upper limit for values of 
bluntness b; (2) perfect circular folds define the lower 
limit of aspect ratio P for all values of bluntness b -< 1; 
(3) the value of bluntness b of the perfect periodic fold 
defines an upper limit of b for all imperfect periodic 
folds; and (4) there is no theoretical upper  limit to the 
aspect ratio P for imperfect folds. 

The geometry of multiple-hinged folds is not con- 
strained by the relation in equation (6) for perfect folds, 

so the extension of the surface of acute perfect folds to 
values of b > 1 is meaningless, as is the extension of the 
surface of perfect obtuse folds to values of b < 1. On the 
projection of fold style space onto the (log P, b) plane, 
therefore,  the bluntness b = 1 is the boundary between 
perfect acute and perfect obtuse folds (Fig. 8a). 

Classification of  folds on the (log P, +) plane 

The most convenient primary classification of folds is 
provided by the circumscribed trapezoid. A given trape- 
zoid includes a perfect fold and a range of imperfect folds 
that differ only on the basis of their bluntness. The 
trapezoids are characterized by the aspect ratio P and 
folding angle q~, and so the (P, q~) plane, with a 
logarithmic P axis, is the most convenient plane to use 
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for the primary systematic classification of both perfect 
and imperfect folds. 

Figure 11 is a projection of the perfect fold surface of 
Fig. 5 onto the (log P, q~) plane. The boundaries of the 
different style classes for aspect ratio and tightness are 
labeled around the perimeter of the diagram, and con- 
tours of constant bluntness b for perfect folds are pro- 
jected onto the plane. Perfect and imperfect single- 
hinged folds plot only in the area containing these 
contours, and the contours indicate the maximum possi- 
ble values of bluntness for the imperfect single-hinged 
folds (cf. Figs. 9 and 10). The limit for periodic obtuse 
perfect folds appears in the upper-right quadrant. The 
area above the perfect chevron fold line (b = 0) is an 
area of impossible fold geometries. The area below the 
circular fold line (b = 1) contains double-hinged folds. 
For values of bluntness exceeding the contour value, 
folds in the contoured portion of the diagram are also 
double-hinged. 

Figure 12 shows the outlines of the plot from Fig. 11 
with a sampling of the style classes indicated by their 
circumscribing trapezoids. Within the area where per- 
fect folds plot, each trapezoid is inscribed with the 
associated perfect fold shape. Outside that area, some of 
the variation in fold style is suggested by two different 
inscribed folds. 

The examples discussed above indicate that the three 
style elements P, q~ and b may be used to classify 
multiple-hinged folds as well as single-hinged folds. For 
multiple-hinged folds, however, the bluntness b only 
describes the curvature of the closure, leaving the curva- 
ture of the hinges unspecified. For example, the hinges 
of double-hinged folds in Figs. 9 and 10 have been drawn 
as sharp hinges, whereas in Fig. 12 they are shown with 
some arbitrary bluntness. A more precise characteriza- 
tion requires that the bluntness of the hinges also be 
specified. The method would be the same as for defining 
the bluntness of single-hinged folds. 

APPLICATION TO ASYMMETRIC FOLDS 
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Fig. 13. Elements of fold style for perfect asymmetric folds showing the 
circumscribing quadrilateral, amplitude A, half-wavelength M, folding 
and interlimb angles ¢ and t, and inclination angles fl and a for the 
interlimb angle bisector and the axial surface, respectively. (a) Acute 

fold. (b) Obtuse fold. 

The geometry of asymmetric folds 

Asymmetric perfect folds of both acute and obtuse 
geometry, like their symmetric counterparts, are defined 
to be single-hinged folds composed in profile of perfectly 
straight limbs which are tangent to a perfectly circular 
arc that forms the hinge zone (Fig. 13). The asymmetric 
character of a perfect fold is defined relative to the 
median line M by two independent angles (Turner & 
Weiss 1963), the inclination fl of the bisector of the 
interlimb angle t, and the inclination a of the axial 
surface (Fig. 13). The first angle is a characteristic of 
folded surfaces; the second angle is strictly a characteris- 
tic of a folded layer or multilayer because at least two 
nested folded surfaces are required to define the orienta- 
tion of the axial surface. Nevertheless, isolated folded 
surfaces are at most rare, and an axial surface can 
generally be defined for a folded surface. I show below 

that for the exceptional cases where no axial surface can 
be defined, the analysis can be done using only the 
interlimb angle bisector. The two inclination angles a 
and fl are additional style elements that are required to 
describe perfect asymmetric folds. 

A circumscribing quadrilateral is defined for asym- 
metric folds which has a base M equal to the line segment 
joining the adjacent inflection points, sides parallel to 
the fold limbs at the inflection points, and a top tangent 
to the fold and normal to the interlimb angle bisector 
(Fig. 13). For perfect folds, the point of tangency is at the 
hinge and lies on the interlimb angle bisector. 

For asymmetric imperfect folds, the closure need not 
lie on the interlimb angle bisector. To complete the 
description of asymmetry for imperfect folds, therefore, 
a third angle r must be defined (Hudleston 1973) mea- 
sured from the top of the circumscribing quadrilateral, 



618 R.J .  Twlss 

QUADRILATERAL .~ 
TANGENT POINT/ ,  

QUADRILATERAL HINGE \ J / ~ 
TANGENT " -  - _ POINT ~.~ "%.. ~ ~ 

HINGE POINT _ ~_ . . . . .  ~ / ' 7  
TANGENT . . . .  

" / ~ HINGE POINT= 
~ ~ "  QUADRILATERAl. 

/:%-_.4 TANGENT POINT 

~ H~NNGF, E Ij~L~/~//" / , , ~  1:=0 (b) 

QUADRILATERAL ~ / 
TANGENT POINT . ~ / ~ 

E POINT 

/ ' / - /  /~ _/qk, X ~ ' - - _  QUADRILATERAL 

f ., ~ , I \ ~.HINGE POINT 
, \ .TANGENT • . \ 

_ (c) 

Fig. 14. Definition of  the hinge tangent  angle r that is a style e lement  
indicating the posit ion of the hinge relative to the inter l imb angle 
bisector. Shaded areas are the hinge zones of each fold• (a) Positive r. 

(b) Zero r. (c) Negative r. 

through the acute angle, to the line tangent to the fold 
surface at the hinge point (Fig. 14). This angle may be 
positive (Fig. 14a), zero (Fig. 14b) or negative 
(Fig. 14c), using the usual definition of counterclockwise 
angles positive and clockwise angles negative. 

The aspect ratio P is again defined to be the ratio A / M  
(equation 1), where A is the distance from the base M to 
the top of the circumscribing quadrilateral measured 
along the axial surface (Fig. 13). The folding angle q~ is 
the sum of the two limb angles ~Pl and ~P2 measured from 
the median surface to each limb at the inflection points 
(Fig. 13). It is also the angle between the normats to the 
two limbs at the inflection points (Fig. 13). In order to 
define the bluntness, we must define a reference radius 
characteristic of the fold. It is not possible to construct a 
circle tangent to the limbs at both inflection points, so I 
define r0 for asymmetric folds by the same equation 
(equation 4) that defines r0 for symmetric folds. As a and 
fl increase towards 90 °, the fold becomes symmetric, and 
the definitions for the circumscribing quadrilateral, 
aspect ratio, folding angle and bluntness become identi- 
cal to those elements of style defined for symmetric folds. 

The equivalent  style elements 

The classification scheme for symmetric folds (Figs. 
11 and 12) can be adapted for use with asymmetric folds 

by defining for each style of asymmetric fold an equiva- 
lent symmetric fold. The transformation from the asym- 
metric to the equivalent symmetric fold provides defini- 
tions of a generalized aspect ratio and a generalized 
bluntness that apply to both asymmetric and symmetric 
folds. The relationship among the generalized style 
characteristics for perfect folds is still represented 
exactly by equation (6) and by the diagrams of the 
perfect fold surface in the three dimensional fold style 
space (Fig. 5). In this section, I derive the generalized 
forms of the aspect ratio/~, the bluntness ratio/~ and the 
bluntness/~ (note that circumflexes are used to distin- 
guish the generalized style elements and the quantities 
that pertain to the equivalent symmetric folds). 

An equivalent symmetric fold has the same folding 
angle as the associated asymmetric fold. To determine 
the remaining two equivalent style elements (Fig. 15), 
extend the sides of the circumscribing quadrilateral to 
their mutual intersection, and construct the bisector of 
the resulting interlimb angle t. This line also bisects the 
folding angle. At the point where this bisector meets the 
median line M, construct a normal to the bisector. The 
intersections of that normal with the sides of the cir- 
cumscribing quadrilateral or their extension define the 
inflection points fi and L on the equivalent trapezoid. 
The amplitude A, the half-wavelength .~/and the radius 
of the reference circle i0 for the equivalent trapezoid are 
all defined as before for symmetric folds. The closure 
radius of curvature r~ remains unchanged in the trans- 
formation from the asymmetric to the equivalent sym- 
metric fold. 

Thus the equivalent elements of fold style are defined 
as before for symmetric folds: 

A /6 = __~ 
M 

/ 3 -  rc (10) 

/~= {~c/f,, f°rrc--<r0 
- ~o/rc for r c - r0 

and the folding angle q~ remains unchanged. 
Looking first at acute perfect asymmetric folds, we 

find from Fig. 15(a), 

/] = A cos ~ + A sin_____66. (1 t) 
tan fl 

Using standard trigonometric relations and the identity 

6 = a - fi (12) 

equation (t 1 ) can be written 

/] = A sin (_.._~t. (13) 
sin fl 

If an axial surface cannot be identified for a fold, 
measurement of the amplitude along the folding angle 
besector provides A directly. 

In the asymmetric fold, the half wavelength M is 
divided by the bisector of the interlimb angle into two 
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Fig. 15. Geometry for defining the equivalent symmetric fold for a given asymmetric fold. (a) Acute fold. (b) Obtuse fold. 

unequal parts Ml and M E .  Each part is related to the 
equivalent half wavelength J¢/by the relations (Fig. 15a) 

/~/ _ Mt sin ~1 1 

2 sin ~p/2 [ .  (14) 

/ ~ f  _ M 2 sin ~ 2  

2 sin q~/2 

Solving these equations for MI and ME, respectively, 
and using standard trigonometric identities plus the 
following relations 

M = Mt + M2 (15) 

~ 1  = qd2 + fl - ~/21 (16) 
g'2 qd2 - fl + ~/2J 

we find 

M (sin 2 f l  - -  COS 2 q~/2) (17) 
/(/ -- sin fl sin 2 q~/2 " 

The equivalent reference radius of curvature ~0 (Fig. 
15a) is defined in the same manner as shown in equation 
(4) 

r0  - 2 sin ~/2 (18) 

Using equation (17) for h?/ and equation (4) for the 
reference radius r0 of the asymmetric fold, equation (18) 
becomes 

r0 (sinE fl -- COS 2 ~/2). (19) 
r0  - -  sin fl sin E q~/2 

For symmetric folds, a = fl = 90 ° and the equivalent 
parameters ,4, ~ / a n d  r0 defined in equations (13), (17) 
and (19) all reduce to the quantities already defined for 
symmetric folds. 

Finally using equations (13), (17) and (19) in equation 
(10) gives the definition of the generalized aspect ratio P 
and generalized bluntness ratio/~ 

sin E ~/2 (20) 
/6 = p sin a (sin E fl _ cosE q~/2) 

sin E ~/2 (21) 
/~ = B sin fl (sin Efl _ cos2 ~/2) 

The generalized bluntness/~ is related to/~ by the second 
and third equations in equation (10). In equations (20) 
and (21), when a fold is symmetric, a and fl both become 
90 ° . Thus the sines of those angles are 1, and in that case 
the fractions in the equations also become 1, showing 
that the generalized definitions of aspect ratio and blunt- 
ness ratio reduce to the previous definitions for sym- 
metric folds. 

For asymmetric obtuse folds (Fig. 15b), all the equa- 
tions for acute folds remain unchanged, so the final 
transformation equations (20) and (21) are identical. 

Thus using the generalized definitions for aspect ratio 
P and bluntness6 along with the folding angle ~, all folds 
including symmetric and asymmetric, acute and obtuse, 
single-hinged and double-hinged, may be classified by 
the system shown in Figs. 11, 12 and 8(a). For any 
particular point in fold style space, then, the symmetric 
and asymmetric folds are distinguished from one another 
by the values of the two inclination angles fl and a for the 
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interlimb angle bisector and the axial surface, respec- 
tively, and the hinge tangent angle r. Asymmetric folds 
thus require twice the number of parameters to define 
their geometry as symmetric folds, and because of this 
additional complexity less attention is generally given to 
their geometry. 

C O M P A R I S O N  W I T H  H U D L E S T O N ' S  
CLASSIFICATION 

Both Stabler (1968) and Hudleston (1973) have prop- 
osed that fold forms be described on the basis of the first 
two odd coefficients of a Fourier sine series fit to various 
fold forms. Plotting the two Fourier coefficients on 
orthogonal axes gives a systematic way of organizing the 
various possible fold styles. Because the determination 
of Fourier series coefficients is an impractical technique 
for rapid fold classification, both authors presented fold 
form charts based on such a plot, and Hudleston prop- 
osed a classification system using six 'shape' classes 
(A-F)  and five 'amplitude' classes (1-5). Because Hud- 
leston uses analytic functions as the boundaries for 
several of his shape classes, it is particularly easy to 
compare his classification with the one proposed here. 

Hudleston's fold style chart is rearranged in Fig. 16 in 
a format approximately reflecting the relative values of 

bluntness and aspect ratio of the folds. The six shape 
classes A-F,  within a given amplitude class, correspond 
in the present analysis to progressively decreasing blunt- 
ness (note that in Fig. 16, bluntness increases to the left 
to facilitate comparison with Fig. 17). The five amplitude 
classes 1-5 correspond to progressively increasing aspect 
ratio, and Hudleston's five classes are comparable, but 
not identical, to the five aspect ratio classes proposed 
here (cf. Table 1 with aspect ratios listed in Fig. 16). 
Shape classes A, B and C are inherently isoclinal; for the 
other three shape classes, the folding angle decreases 
both downward and to the right toward a minimum in 
the lower right of Fig. 16. 

Hudleston's shape classes A, C, D and F as well as one 
class intermediate between D and E are analytic func- 
tions that are easy to plot in the fold style space of Fig. 5. 
Shape A folds are box folds, shape C are semi-ellipses, 
shape D are parabolas, roughly midway between the 
shapes D and E are sinusoidal folds, and shape F are 
chevron folds. The equations for the analytic functions, 
based on a wavelength of ZT; are given by Hudleston as 

(A) box v ~-~ k k > 0, 0 ~-.-. x ~---- ~/2 (22) 

(C) semi-ellipse y = +lax" - a~x] ~l~ 
a < I), 0 -< x <-- .7 (23) 

(D) parabola v = a.r ~ -- a~x 
a < 0 .  0-<;x ~ ~ (24) 
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Figure l(~. Fold styles in Hudles ton 's  fold classification based tm his six ' shape '  classe~, (A l:i and live "amplitude" classc~, 
(1-5). The fold styles are arranged relative to one another  according to their aspect ratio and their approximate bluntness. 
Bluntness increases from right to left. The folding angle is 180 ° (isoclmal) for shapes A, B and C, whereas for shapes D, 

and F it decreases downward and to the right. 



Classification of folds in single surfaces 621 

sine wave y = k s i n x  k > 0  (25) 

(F) chevron y =  kx k > 0 ,  0 - < x - < J r / 2 .  (26) 

The aspect ratio is determined from 

p _ A _ Ymax _ ylx==,z (27) 
M ar z~ 

The folding angle is calculated from 

q)/2 = tan -1 (y ')  at x = 0, (28) 

where y' is the first derivative of y with respect to x. For 
the radii of curvature required to determine the blunt- 
ness, r0 is determined from equation (4) with M = Jr, 
and re is determined from the equation for the radius of 
curvature of a line, which is presented in standard texts 
on analytic geometry 

[1 + (y,)213/2 at x = Jr/2, (29) 
rc - l y " [  

where y" is the second derivative of y with respect to x. 
The equations defining the fold style parameters 

determined from equations (22)-(29) are presented in 
Table 4. The lines in fold style space for shape classes A, 
C, D, sinusoidal and F are plotted in Fig. 17, and the 
boundaries for the different 'amplitude' classes are also 
labeled on the diagram. Shape F is the class of perfect 
chevron folds which therefore plot along the b = 0 line 
of the perfect fold surface. The sinusoidal and parabolic 
shapes plot entirely within the acute imperfect single- 
hinged fold volume. The semi-elliptical folds are iso- 
clinal and therefore are confined to the plane of constant 
folding angle ~ = 180 °. Their plot crosses the perfect 
fold surface from the volume of imperfect single-hinged 
folds into the volume of double-hinged folds at the 
intersection with the line of perfect circular folds 
(b = 1). Visual inspection of shape B folds indicates 
they would plot on the isoclinal fold surface (~O = 180 °) 
at a slightly higher aspect ratio for a given bluntness than 
the semi-elliptical folds• Shape A box folds also plot on 
the isoclinal fold surface at constant maximum bluntness 
(b = 2). 

The fold style lines in Fig. 17, if projected onto the 
(log P, b) plane, show relative relations of the fold 
styles that justify the arrangement shown in Fig. 16. It is 
apparent from Fig. 16 that Hudleston's classes D5, E5 
and F5 differ very little from one another. C5 is also very 

Table 4. Determination of fold style elements for Hudleston's  fold 
classification 

Aspect ratio Folding angle Bluntness 
Shape class (P) (~) ratio (B) 

A Box k/~ 180 ° c~ 
B 

C Semi-elliptical 0 .5~ / -a  180 ° 1/~-a  

D Parabolic -a:r/4 2 t an- '  ( - a n )  - s i n  ((p/2)/a~ 

Sinusoidal k/:r 2 tan-r k 2 sin ((p/2)/k~ 
E 

F Chevron k/2 2tan -~ k 0 

•. ~ FOLDS 10 
" ' " , . . i .  ~.. ~) 

. ~" ~ : ~  ~ ~ C H E V R O N  
- -'BOX ~ J ~ - ~ ~ I  IU~IDAL~ SHAPE F ~ - l ~ - ~ ~ I ~ l  U S~O ID AL~- ~ 

SEMI-ELLIPTICAL " ~  PARABOLIC 
"SHAPE C ~ "SHAPE D 

Fig. 17. A plot in three-dimensional fold style space of Hudleston's 
fold shapes A, C, D, sinusoidal and F, each of which plots as a line. The 
surface connecting these lines represents approximately Hudleston's  
two-parameter classification system for folds in single surfaces• 
Chevron (shape F), sinusoidal, shape E (not plotted) and parabolic 
(shape D) fold styles all plot within the volume of single-hinged 
imperfect folds. Shape E folds plot between the sinusoidal and shape F 
folds. Semi-elliptical (shape C), shape B (not plotted) and box (shape 
A) folds all plot on the plane ofisoclinal folds (q~ = 180°). Box folds all 
plot at b = 2; semi-elliptical folds (shape C) plot along a curve that 
passes from single-hinged imperfect folds to double-hinged folds at 
b = 1. Hudles ton ' s ' ampl i tude 'c lassesare the labe led l inesofcons tan t  
P. Contours on the perfect fold surface (Fig. 5) for b = 1 and for 
P = 0.1, 1 and 10 are shown as dotted lines for comparison. The two 

surfaces are identical along the line for chevron folds (b = 0). 

similar. This similarity is reflected in the convergence of 
the fold style lines at the high values of log P in fold style 
space (Fig. 17). There is a major distinction in folding 
angle between shapes A, B and C on the one hand, and 
D, E and F on the other. The first three are confined to 
the plane of isoclinal folds (q, = 180°), whereas the 
others vary from low folding angles at low aspect ratios 
to almost isoclinal shapes at high aspect ratios (Figs. 16 
and 17). Finally shape A folds are all double-hinged; 
shapes B and C vary from double-hinged at low aspect 
ratios to single-hinged at high aspect ratios; and shapes 
D, E and F are all single-hinged folds (Figs. 16 and 17). 
These relationships result in a major jump in style at high 
aspect ratios between the double-hinged shape A and 
the other five single-hinged shapes, and a smaller jump 
at low aspect ratio between the double-hinged shapes A, 
B and C on the one hand and the single-hinged shapes D, 
E and F on the other. 

Thus the fold styles that can be represented by Hud- 
leston's classification are restricted to a specific surface 
in fold style space, which is approximated by the shaded 
surface joining the fold style curves in Fig. 17. For acute 
single hinged folds, that surface is within the volume for 
imperfect folds and quite close to the surface for perfect 
folds• At high aspect ratios, the differences between 
several of the shape classes are relatively minor; double- 
hinged folds are only represented by isoclinal geom- 
etries; obtuse folds are not included at all; and the 
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Fig. 18. Template of circular arcs ranging in radius from ~). I to 30 cm for estimating the closure radius on fold profiles. 

folding angle and bluntness are not considered as inde- 
pendent  parameters.  

CONCLUSIONS 

The geometry of folds in single surfaces can be 
described by three fold style parameters ,  the aspect ratio 
P, the folding angle ~p and the bluntness b. This classifica- 
tion system is a generalization of existing two-parameter  
classifications. For symmetric folds, the first two param- 
eters are characterics of a trapezoid circumscribing the 
fold, and that trapezoid is the basis for the primary 
classification of folds. Within a given trapezoid, different 
styles of folding are distinguished by the bluntness of the 
folding, and such styles can range from sharp single- 
hinged folds, through folds with straight limbs and circu- 
lar hinge zones, to double-hinged folds. 

Perfect folds are an idealized family of folds for which 
only two of the fold style parameters  are independent.  
They therefore plot on a well-defined surface in the 

three-dimensional ['old style space. Perfect folds are 
characterized by a single hinge, and perfectly straight 
limbs tangent to perfectly circular hinge zones. This 
family of folds defines the limiting values of the fold style 
parameters  for imperfect single-hinged folds, which 
includes all natural single-hinged folds, and these limits 
separate single-hinged folds from double-hinged folds. 

The classification system is easily applied. Inflection 
points on folds are relatively easy to locate by eye, so the 
circumscribing trapezoid is easily identified. The angle 
between the base and the side of the trapezoid is half the 
folding angle ~p, and the ratio of the height A to the base 
M defines the aspect rano. These features are also easily 
measured. The reference radius r~ is defined in terms of 
~p and M by equanon (4). Only the closure radius r~. is 
somewhat difficult to measure.  The simplest method is 
to use visual inspection to apprommate  the closure 
curvature of a fold from a template of circular arcs. One 
such template with a range of over two orders of magni- 
tude in arc radii is given in Fig. 18. For convenience, the 
template may be copied onto a transparency and lami- 
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nated in plastic. For  minor folds in the field, the best 
fitting template curve can be chosen by placing the 
template directly on the fold profile. For  larger folds, the 
template can be applied to photographs of the fold 
profile and the radius scaled appropriately. 

The same classification scheme can be extended to 
asymmetric folds, although the description of the fold 
style for asymmetric perfect folds includes an additional 
two parameters,  the inclination angles fl and ct for the 
interlimb angle bisector and the axial surface, respec- 
tively. For  asymmetric imperfect folds a third param- 
eter,  the hinge tangent angle r is also required. 

The proposed classification scheme is more precise 
and more encompassing than previous schemes. For 
example Hudleston's widely used classification plots as a 
specific surface through the proposed three-dimensional 
fold style space. The volume within which natural single- 
hinged folds can plot is precisely defined in terms of the 
three fold style parameters.  Other  fold styles not 

included in earlier classifications, such as obtuse folds 
with a folding angle greater than isoclinal folds, and a 
wide variety of double-hinged folds, may also be classi- 
fied with the proposed system. 
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